Factorization of the hypergeometric-type difference equation on the uniform lattice.
On commence par présenter une méthode de résolution d’une famille de systèmes fuchsiens d’opérateurs de pseudo-dérivations associées à une famille à deux paramètres d’homographies, qui unifie et généralise les cas connus des systèmes différentiels, aux différences ou aux -différences. Nous traitons ensuite dans cette famille des problèmes de confluence que l’on peut voir comme des problèmes de continuité en ces deux paramètres.
Firstly we study the growth of meromorphic solutions of linear difference equation of the form where and are meromorphic functions of finite logarithmic order,
Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).
Soit un réel de . Nous étudions le système d’équations de convolution suivantNous démontrons que les exponentielles polynômes solutions de sont denses dans l’espace des solutions du système d’équations; l’idéal de engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de régulière...
Consider the third order nonlinear dynamic equation , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation , where α ≥ -1, γ > 0, c > 3, is oscillatory.