Arithmetisches über unendliche Reihen.
A general theory of summation of divergent series based on the Hardy-Kolmogorov axioms is developed. A class of functional series is investigated by means of ergodic theory. The results are formulated in terms of solvability of some cohomological equations, all solutions to which are nonmeasurable. In particular, this realizes a construction of a nonmeasurable function as first conjectured by Kolmogorov.
For infinite discrete additive semigroups we study normed algebras of arithmetic functions endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.
V tomto článku podrobně rozebereme celkem devět řešení tzv. basilejského problému (hledání součtu převrácených hodnot druhých mocnin přirozených čísel). První publikované řešení od L. Eulera využívá rozkladu ``nekonečného polynomu'' na součin kořenových činitelů. Druhé řešení pracuje s Taylorovým rozvojem funkce arkussinus a rekurentním vzorcem pro jistý určitý integrál, třetí je založeno na vztazích mezi goniometrickými funkcemi a exponenciálou a výpočtu limity s využitím l'Hospitalova pravidla....