Displaying 461 – 480 of 1168

Showing per page

Multigeometric sequences and Cantorvals

Artur Bartoszewicz, Małgorzata Filipczak, Emilia Szymonik (2014)

Open Mathematics

For a sequence x ∈ l 10, one can consider the achievement set E(x) of all subsums of series Σn=1∞ x(n). It is known that E(x) has one of the following structures: a finite union of closed intervals, a set homeomorphic to the Cantor set, a set homeomorphic to the set T of subsums of Σn=1∞ x(n) where c(2n − 1) = 3/4n and c(2n) = 2/4n (Cantorval). Based on ideas of Jones and Velleman [Jones R., Achievement sets of sequences, Amer. Math. Monthly, 2011, 118(6), 508–521] and Guthrie and Nymann [Guthrie...

Multisommabilité des séries entières solutions formelles d’une équation aux q -différences linéaire analytique

Fabienne Marotte, Changgui Zhang (2000)

Annales de l'institut Fourier

Nous introduisons une version q -analogue du procédé d’accélération élémentaire d’Écalle-Martinet-Ramis et définissons la notion de série entière G q -multisommable. Nous montrons que toute série entière solution formelle d’une équation aux q -différences linéaire analytique est G q -multisommable.

Multisummability for some classes of difference equations

Boele L. J. Braaksma, Bernard F. Faber (1996)

Annales de l'institut Fourier

This paper concerns difference equations y ( x + 1 ) = G ( x , y ) where G takes values in C n and G is meromorphic in x in a neighborhood of in C and holomorphic in a neighborhood of 0 in C n . It is shown that under certain conditions on the linear part of G , formal power series solutions in x - 1 / p , p N , are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.

Currently displaying 461 – 480 of 1168