Brève communication. Interpolation par des fonctions de
Brève communication. Résultats sur les procédés de sommation et l’algorithme
Brushlet characterization of the Hardy space H1(R) and the space BMO.
A typical wavelet system constitutes an unconditional basis for various function spaces -Lebesgue, Besov, Triebel-Lizorkin, Hardy, BMO. One of the main reasons is the frequency localization of an element from such a basis. In this paper we study a wavelet-type system, called a brushlet system. In [3] it was noticed that brushlets constitute unconditional bases for classical function spaces such as the Triebel-Lizorkin and Besov spaces. In this paper we study brushlet expansions of functions in the...
Calculating a class of integrals encountered in theoretical chemistry
Calculating Singular Integrals as an Ill-posed Problem.
Calculation of Gauss Quadratures with Multiple Free and Fixed Knots
Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations
The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other. They...
Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations
The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other....
Calculation of the Weights of Interpolarory Quadratures
Cálculo rápido de las funciones de Bessel modificadas Kis(X) e Iis(X) y sus derivadas.
En este trabajo discutimos la resolución de la ecuación de Besseld2x/dx2 + (1/x)(dy/dx) - (1 - s2/x2)y = 0.Las funciones de Bessel modificadas Kv(x) e Iv(x) son las soluciones a la ecuación anterior cuando v = is. El valor de la función Kis(x) es real y el de la función Iis(x) es complejo, por ello definimos en su lugar una función real Mis(x). La función Iis(x) resultará ser una combinación de las funciones Kis(x) y Mis(x). Daremos algunos desarrollos en serie de Mis(x) y Kis(x) junto con sus derivadas...
Canonical functions of asymptotic diffraction theory associated with symplectic singularities
A general method of deriving canonical functions for ray field singularities involving caustics, shadow boundaries and their intersections is presented. It is shown that many time-domain canonical functions can be expressed in terms of elementary functions and elliptic integrals.
Canonical products of infinite order.
Cardinal hermite interpolation with box splines II.
Cardinal Hermite-Spline-Interpolation on the Equidistant Lattice.
Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
Cauchy-Poisson transform and polynomial inequalities
We apply the Cauchy-Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in is Hölder continuous then E admits a Szegö type inequality with weight function with a positive κ. This can be viewed as a (nontrivial) generalization of the classical result for the interval E = [-1,1] ⊂ ℝ.
Cebysev subspaces of C*-algebras.
Central limit theorem for square error of multivariate nonparametric box spline density estimators
We prove the central limit theorem for the integrated square error of multivariate box-spline density estimators.
Certain family of Durrmeyer type operators
The present paper is a continuation of the earlier work of the author. Here we study the rate of convergence of certain Durrmeyer type operators for function having derivatives of bounded variation.