Displaying 561 – 580 of 2607

Showing per page

Brushlet characterization of the Hardy space H1(R) and the space BMO.

Lasse Borup (2005)

Collectanea Mathematica

A typical wavelet system constitutes an unconditional basis for various function spaces -Lebesgue, Besov, Triebel-Lizorkin, Hardy, BMO. One of the main reasons is the frequency localization of an element from such a basis. In this paper we study a wavelet-type system, called a brushlet system. In [3] it was noticed that brushlets constitute unconditional bases for classical function spaces such as the Triebel-Lizorkin and Besov spaces. In this paper we study brushlet expansions of functions in the...

Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other. They...

Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other....

Cálculo rápido de las funciones de Bessel modificadas Kis(X) e Iis(X) y sus derivadas.

Lluís Closas Torrente, Juan Antonio Fernández Rubio (1987)

Stochastica

En este trabajo discutimos la resolución de la ecuación de Besseld2x/dx2 + (1/x)(dy/dx) - (1 - s2/x2)y = 0.Las funciones de Bessel modificadas Kv(x) e Iv(x) son las soluciones a la ecuación anterior cuando v = is. El valor de la función Kis(x) es real y el de la función Iis(x) es complejo, por ello definimos en su lugar una función real Mis(x). La función Iis(x) resultará ser una combinación de las funciones Kis(x) y Mis(x). Daremos algunos desarrollos en serie de Mis(x) y Kis(x) junto con sus derivadas...

Caristi's fixed point theorem and its equivalences in fuzzy metric spaces

Naser Abbasi, Hamid Mottaghi Golshan (2016)

Kybernetika

In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.

Cauchy-Poisson transform and polynomial inequalities

Mirosław Baran (2009)

Annales Polonici Mathematici

We apply the Cauchy-Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in N is Hölder continuous then E admits a Szegö type inequality with weight function d i s t ( x , E ) - ( 1 - κ ) with a positive κ. This can be viewed as a (nontrivial) generalization of the classical result for the interval E = [-1,1] ⊂ ℝ.

Certain family of Durrmeyer type operators

Vijay Gupta (2009)

Annales UMCS, Mathematica

The present paper is a continuation of the earlier work of the author. Here we study the rate of convergence of certain Durrmeyer type operators for function having derivatives of bounded variation.

Currently displaying 561 – 580 of 2607