The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
111
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function, depends only on and are...
We perform a complete study
of the truncation error of the Jacobi-Anger series.
This series expands every
plane wave in terms of
spherical harmonics
.
We consider the truncated series where the summation is
performed over the 's satisfying .
We prove that if is large enough,
the truncated series gives rise to an error lower than ϵ
as soon as L satisfies
where W is the Lambert function and
are pure positive constants.
Numerical experiments show that this
asymptotic is...
We perform a complete study
of the truncation error of the Gegenbauer series.
This series yields an expansion of the Green kernel of the
Helmholtz equation,
,
which is the core of the Fast Multipole Method for the integral equations.
We consider the truncated series where the summation is
performed over the indices .
We prove that if is large enough,
the truncated series gives rise to an error lower than ϵ
as soon as L satisfies
where W is the Lambert function,
depends only on...
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
We consider the smoothness parameter of a function f ∈ L²(ℝ) in terms of Besov spaces ,
.
The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p ≥ 1) spline wavelets with exponential decay we extend them to density functions with 0 < s*(f) < p+1/2. Applying the Franklin-Strömberg wavelet p = 1, we prove that the presented estimator...
In this note quadrature formula with error estimate for functions with simple pole is discussed. Chebyshev points of the second kind are used as the nodes of integration.
Currently displaying 61 –
80 of
111