The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Approximate solution of an inhomogeneous abstract differential equation

Emil Vitásek (2012)

Applications of Mathematics

Recently, we have developed the necessary and sufficient conditions under which a rational function F ( h A ) approximates the semigroup of operators exp ( t A ) generated by an infinitesimal operator A . The present paper extends these results to an inhomogeneous equation u ' ( t ) = A u ( t ) + f ( t ) .

Asymptotic distribution of poles and zeros of best rational approximants to x α on [0,1]

E. Saff, H. Stahl (1995)

Banach Center Publications

Let r n * n n be the best rational approximant to f ( x ) = x α , 1 > α > 0, on [0,1] in the uniform norm. It is well known that all poles and zeros of r n * lie on the negative axis < 0 . In the present paper we investigate the asymptotic distribution of these poles and zeros as n → ∞. In addition we determine the asymptotic distribution of the extreme points of the error function e n = f - r n * on [0,1], and survey related convergence results.

Currently displaying 21 – 26 of 26

Previous Page 2