The search session has expired. Please query the service again.
In this paper, we obtain some approximation theorems for k- positive linear operators defined on the space of analytical functions on the unit disc, via I-convergence. Some concluding remarks which includes A-statistical convergence are also given.
We prove that every singular algebraic curve in ℝⁿ admits local tangential Markov inequalities at each of its points. More precisely, we show that the Markov exponent at a point of a real algebraic curve A is less than or equal to twice the multiplicity of the smallest complex algebraic curve containing A.
Currently displaying 1 –
3 of
3