The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 73

Showing per page

On approximation by Chebyshevian box splines

Zygmunt Wronicz (2002)

Annales Polonici Mathematici

Chebyshevian box splines were introduced in [5]. The purpose of this paper is to show some new properties of them in the case when the weight functions w j are of the form w j ( x ) = W j ( v n + j · x ) , where the functions W j are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.

On approximation of functions by certain operators preserving x 2

Lucyna Rempulska, Karolina Tomczak (2008)

Commentationes Mathematicae Universitatis Carolinae

In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving e k ( x ) = x k , k = 0 , 2 . Using a modification of certain operators L n preserving e 0 and e 1 , we introduce operators L n * which preserve e 0 and e 2 and next we define operators L n ; r * for r -times differentiable functions. We show that L n * and L n ; r * have better approximation properties than L n and L n ; r .

Currently displaying 1 – 20 of 73

Page 1 Next