On the Krall-type polynomials.
Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series...
The norm of a trigonometric polynomial with non zero coefficients of absolute value not less than 1 exceeds a fixed positive multiple of
We show that the functions in L2(Rn) given by the sum of infinitely sparse wavelet expansions are regular, i.e. belong to C∞L2 (x0), for all x0 ∈ Rn which is outside of a set of vanishing Hausdorff dimension.
We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces , , or . We prove that the maximal Fejér operator is bounded from or into weak-, and also bounded from into . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces , , and with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures....
Given a positive measure μ in , there is a natural variant of the noncentered Hardy-Littlewood maximal operator , where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in . We give some necessary and sufficient conditions for to be bounded from to .
For d > 1, let , , where f̂ is the Fourier transform of , and its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
In this paper we prove that the maximal operator where is the -th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space to the space