Displaying 2061 – 2080 of 3651

Showing per page

On the L 1 -convergence of Fourier series

S. Fridli (1997)

Studia Mathematica

Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series...

On the L 1 norm of exponential sums

S. K. Pichorides (1980)

Annales de l'institut Fourier

The L 1 norm of a trigonometric polynomial with N non zero coefficients of absolute value not less than 1 exceeds a fixed positive multiple of C ( log N ) / ( log log N ) 2 .

On the maximal Fejér operator for double Fourier series of functions in Hardy spaces

Ferenc Móricz (1995)

Studia Mathematica

We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces H ( 1 , 0 ) ( 2 ) , H ( 0 , 1 ) ( 2 ) , or H ( 1 , 1 ) ( 2 ) . We prove that the maximal Fejér operator is bounded from H ( 1 , 0 ) ( 2 ) or H ( 0 , 1 ) ( 2 ) into weak- L 1 ( 2 ) , and also bounded from H ( 1 , 1 ) ( 2 ) into L 1 ( 2 ) . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces L 1 l o g + L ( 2 ) , L 1 ( l o g + L ) 2 ( 2 ) , and L μ ( 2 ) with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures....

On the maximal function for rotation invariant measures in n

Ana Vargas (1994)

Studia Mathematica

Given a positive measure μ in n , there is a natural variant of the noncentered Hardy-Littlewood maximal operator M μ f ( x ) = s u p x B 1 / μ ( B ) ʃ B | f | d μ , where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in n . We give some necessary and sufficient conditions for M μ to be bounded from L 1 ( d μ ) to L 1 , ( d μ ) .

On the maximal operator associated with the free Schrödinger equation

Sichun Wang (1997)

Studia Mathematica

For d > 1, let ( S d f ) ( x , t ) = ʃ n e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , x n , where f̂ is the Fourier transform of f S ( n ) , and ( S d * f ) ( x ) = s u p 0 < t < 1 | ( S d f ) ( x , t ) | its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) ( ʃ | x | < R | ( S d * f ) ( x ) | p d x ) 1 / p C R f H 1 / 4 holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.

On the maximal operator of Walsh-Kaczmarz-Fejér means

Ushangi Goginava, Károly Nagy (2011)

Czechoslovak Mathematical Journal

In this paper we prove that the maximal operator σ ˜ κ , * f : = sup n | σ n κ f | log 2 ( n + 1 ) , where σ n κ f is the n -th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space H 1 / 2 ( G ) to the space L 1 / 2 ( G ) .

Currently displaying 2061 – 2080 of 3651