Displaying 281 – 300 of 459

Showing per page

Almost everywhere summability of Laguerre series

Krzysztof Stempak (1991)

Studia Mathematica

We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions n a ( x ) = ( n ! / Γ ( n + a + 1 ) ) 1 / 2 e - x / 2 L n a ( x ) , n = 0,1,2,..., in L 2 ( + , x a d x ) , a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function f L p ( x a d x ) , 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.

Almost everywhere summability of Laguerre series. II

K. Stempak (1992)

Studia Mathematica

Using methods from [9] we prove the almost everywhere convergence of the Cesàro means of Laguerre series associated with the system of Laguerre functions L n a ( x ) = ( n ! / Γ ( n + a + 1 ) ) 1 / 2 e - x / 2 x a / 2 L n a ( x ) , n = 0,1,2,..., a ≥ 0. The novel ingredient we add to our previous technique is the A p weights theory. We also take the opportunity to comment and slightly improve on our results from [9].

Almost periodic sequences and functions with given values

Michal Veselý (2011)

Archivum Mathematicum

We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set  X in a metric space, it is proved the existence of an almost periodic sequence { ψ k } k such that { ψ k ; k } = X and ψ k = ψ k + l q ( k ) , l for all  k and some q ( k ) which depends on  k .

Almost periodic solutions with a prescribed spectrum of systems of linear and quasilinear differential equations with almost periodic coefficients and constant time lag (Cauchy integral)

Alexandr Fischer (1999)

Mathematica Bohemica

This paper generalizes earlier author's results where the linear and quasilinear equations with constant coefficients were treated. Here the method of limit passages and a fixed-point theorem is used for the linear and quasilinear equations with almost periodic coefficients.

Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term

Ján Andres, Alberto Maria Bersani, Lenka Radová (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of ε for ε -almost-periods of solutions and their derivatives...

Currently displaying 281 – 300 of 459