Displaying 601 – 620 of 3638

Showing per page

Capacitary strong type estimates in semilinear problems

D. Adams, Michel Pierre (1991)

Annales de l'institut Fourier

We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures μ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures μ for which the Sobolev space W 2 , p can be imbedded into L p ( μ ) . The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular...

Capacité analytique et le problème de Painlevé

Hervé Pajot (2003/2004)

Séminaire Bourbaki

Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d’analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au dévelopement de techniques fines d’analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème...

Carleson measures associated with families of multilinear operators

Loukas Grafakos, Lucas Oliveira (2012)

Studia Mathematica

We investigate the construction of Carleson measures from families of multilinear integral operators applied to tuples of L and BMO functions. We show that if the family R t of multilinear operators has cancellation in each variable, then for BMO functions b₁, ..., bₘ, the measure | R t ( b , . . . , b ) ( x ) | ² d x d t / t is Carleson. However, if the family of multilinear operators has cancellation in all variables combined, this result is still valid if b j are L functions, but it may fail if b j are unbounded BMO functions, as we indicate...

Carleson measures for weighted harmonic mixed norm spaces on bounded domains in n

Ivana Savković (2022)

Czechoslovak Mathematical Journal

We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in n . Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.

Carleson measures, trees, extrapolation, and T(b) theorems.

Pascal Auscher, Steve Hofmann, Camil Muscalu, Terence Tao, Christoph Thiele (2002)

Publicacions Matemàtiques

The theory of Carleson measures, stopping time arguments, and atomic decompositions has been well-established in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of this paper is to demonstrate that the two theories are in fact closely related, by taking existing results and reproving them in a unified setting. In particular we give a dyadic version of extrapolation...

Carleson's Theorem: proof, complements, variations.

Michael T. Lacey (2004)

Publicacions Matemàtiques

Carleson's Theorem from 1965 states that the partial Fourier sums of a square integrable function converge pointwise. We prove an equivalent statement on the real line, following the method developed by the author and C. Thiele. This theorem, and the proof presented, is at the center of an emerging theory which complements the statement and proof of Carleson's theorem. An outline of these variations is also given.

Carleson's theorem with quadratic phase functions

Michael T. Lacey (2002)

Studia Mathematica

It is shown that the operator below maps L p into itself for 1 < p < ∞. C f ( x ) : = s u p a , b | p . v . f ( x - y ) e i ( a y ² + b y ) d y / y | . The supremum over b alone gives the famous theorem of L. Carleson [2] on the pointwise convergence of Fourier series. The supremum over a alone is an observation of E. M. Stein [12]. The method of proof builds upon Stein’s observation and an approach to Carleson’s theorem jointly developed by the author and C. M. Thiele [7].

Certain lacunary cosine series are recurrent

D. Grubb, Charles Moore (1994)

Studia Mathematica

Let the coefficients of a lacunary cosine series be bounded and not square-summable. Then the partial sums of the series are recurrent.

Cesàro summability of one- and two-dimensional trigonometric-Fourier series

Ferenc Weisz (1997)

Colloquium Mathematicae

We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from L to L then it is also bounded from the classical Hardy space H p ( T ) to L p (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from H p ( T ) to L p (3/4 < p ≤ ∞) and is of weak type ( L 1 , L 1 ) . We define the two-dimensional dyadic hybrid Hardy space H 1 ( T 2 ) and verify that the maximal operator of the Cesàro means of a two-dimensional...

Character sums in complex half-planes

Sergei V. Konyagin, Vsevolod F. Lev (2004)

Journal de Théorie des Nombres de Bordeaux

Let A be a finite subset of an abelian group G and let P be a closed half-plane of the complex plane, containing zero. We show that (unless A possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of A which belongs to P . In other words, there exists a non-trivial character χ G ^ such that a A χ ( a ) P .

Currently displaying 601 – 620 of 3638