The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 741 –
760 of
3651
In this paper, we obtain some strong and weak type continuity properties for the maximal operator associated with the commutator of the Bochner-Riesz operator on Hardy spaces, Hardy type spaces and weak Hardy type spaces.
We determine the convolution operators on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
We prove three theorems on linear operators induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for to be continuous for 0 < p < ∞.
In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.
On montre que si est une contraction à spectre dénombrable et telle que, pour tout
For the Schrödinger equation, on a torus, an arbitrary non-empty open set provides control and observability of the solution: . We show that the same result remains true for where , and is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for and conjectured for . The higher dimensional generalization remains open for .
A control system of the second order in time with control
is considered. If the
system is controllable in a strong sense and
uT is the control
steering the system to the rest at time
T,
then the L2–norm of uT decreases as
while the –norm of uT is approximately constant.
The proof is based on the moment approach
and properties of the relevant exponential family. Results are
applied to the wave equation with boundary or distributed controls.
We prove some extrapolation results for operators bounded on radial functions with p ∈ (p₀,p₁) and deduce some endpoint estimates. We apply our results to prove the almost everywhere convergence of the spherical partial Fourier integrals and to obtain estimates on maximal Bochner-Riesz type operators acting on radial functions in several weighted spaces.
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.
Currently displaying 741 –
760 of
3651