Displaying 1141 – 1160 of 3651

Showing per page

GCD sums from Poisson integrals and systems of dilated functions

Christoph Aistleitner, István Berkes, Kristian Seip (2015)

Journal of the European Mathematical Society

Upper bounds for GCD sums of the form k , = 1 N ( gcd ( n k , n ) ) 2 α ( n k n ) α are established, where ( n k ) 1 k N is any sequence of distinct positive integers and 0 < α 1 ; the estimate for α = 1 / 2 solves in particular a problem of Dyer and Harman from 1986, and the estimates are optimal except possibly for α = 1 / 2 . The method of proof is based on identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues of the associated GCD matrices are also found. The bounds for such GCD sums are used to establish...

General Franklin systems as bases in H¹[0,1]

Gegham G. Gevorkyan, Anna Kamont (2005)

Studia Mathematica

By a general Franklin system corresponding to a dense sequence of knots 𝓣 = (tₙ, n ≥ 0) in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots 𝓣, that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is a characterization of sequences 𝓣 for which the corresponding general Franklin system is a basis or an unconditional basis in H¹[0,1].

Généralisation des algèbres de Beurling

Philippe Tchamitchian (1984)

Annales de l'institut Fourier

Cet article est consacré à l’étude des espaces A ω = L 2 ( R n ; ω ( x ) d x ) qui sont des algèbres de Banach. On démontre que les multiplicateurs ponctuels de A ω sont les fonctions qui appartiennent localement et uniformément à A ω si et seulement si A ω contient des fonctions à support compact.

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative analogue...

Generalized atomic subspaces for operators in Hilbert spaces

Prasenjit Ghosh, Tapas Kumar Samanta (2022)

Mathematica Bohemica

We introduce the notion of a g -atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of g -fusion frames. Also, we shall describe the concept of frame operator for a pair of g -fusion Bessel sequences and some of their properties.

Generalized Besov type spaces on the Laguerre hypergroup

Miloud Assal, Hacen Ben Abdallah (2005)

Annales mathématiques Blaise Pascal

In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.

Generalized c -almost periodic type functions in n

M. Kostić (2021)

Archivum Mathematicum

In this paper, we analyze multi-dimensional quasi-asymptotically c -almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl c -almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically c -almost periodic functions and reconsider the notion of semi- c -periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain...

Generalized Calderón conditions and regular orbit spaces

Hartmut Führ (2010)

Colloquium Mathematicae

The construction of generalized continuous wavelet transforms on locally compact abelian groups A from quasi-regular representations of a semidirect product group G = A ⋊ H acting on L²(A) requires the existence of a square-integrable function whose Plancherel transform satisfies a Calderón-type resolution of the identity. The question then arises under what conditions such square-integrable functions exist. The existing literature on this subject leaves a gap between sufficient and necessary criteria....

Currently displaying 1141 – 1160 of 3651