Displaying 1541 – 1560 of 3638

Showing per page

Modeling repulsive forces on fibres via knot energies

Simon Blatt, Philipp Reiter (2014)

Molecular Based Mathematical Biology

Modeling of repulsive forces is essential to the understanding of certain bio-physical processes, especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of “energy” which especially prevents the molecules from strongly bending and forming self-intersections. Inspired by a physical toy model, numerous functionals have been defined during the past twenty-five years that aim at modeling self-avoidance. The general idea is to produce “detangled” curves having...

Modulation invariant and multilinear singular integral operators

Michael Christ (2005/2006)

Séminaire Bourbaki

In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters...

Modulation space estimates for multilinear pseudodifferential operators

Árpád Bényi, Kasso A. Okoudjou (2006)

Studia Mathematica

We prove that for symbols in the modulation spaces p , q , p ≥ q, the associated multilinear pseudodifferential operators are bounded on products of appropriate modulation spaces. In particular, the symbols we study here are defined without any reference to smoothness, but rather in terms of their time-frequency behavior.

Modulation space estimates for Schrödinger type equations with time-dependent potentials

Wei Wei (2014)

Czechoslovak Mathematical Journal

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian ( - Δ ) κ / 2 with 1 κ 2 . Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding...

Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm

A. Pełczyński, M. Wojciechowski (1993)

Studia Mathematica

Let E be a Banach space. Let L ¹ ( 1 ) ( d , E ) be the Sobolev space of E-valued functions on d with the norm ʃ d f E d x + ʃ d f E d x = f + f . It is proved that if f L ¹ ( 1 ) ( d , E ) then there exists a sequence ( g m ) L ( 1 ) ¹ ( d , E ) such that f = m g m ; m ( g m + g m ) < ; and g m 1 / d g m ( d - 1 ) / d b g m for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding L ( 1 ) ¹ ( d , E ) L ² ( d , E ) . In particular, the embedding into Besov spaces L ¹ ( 1 ) ( d , E ) B p , 1 θ ( p , d ) ( d , E ) is proved, where θ ( p , d ) = d ( p - 1 + d - 1 - 1 ) for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada....

Molecules in coorbit spaces and boundedness of operators

Karlheinz Gröchenig, Mariusz Piotrowski (2009)

Studia Mathematica

We study the notion of molecules in coorbit spaces. The main result states that if an operator, originally defined on an appropriate space of test functions, maps atoms to molecules, then it can be extended to a bounded operator on coorbit spaces. For time-frequency molecules we recover some boundedness results on modulation spaces, for time-scale molecules we obtain the boundedness on homogeneous Besov spaces.

Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck

Giancarlo Mauceri (2004)

Bollettino dell'Unione Matematica Italiana

Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.

Monotonic rearrangements of functions with small mean oscillation

Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy (2015)

Studia Mathematica

We obtain sharp bounds for the monotonic rearrangement operator from "dyadic-type" classes to "continuous" ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named α-extension.

Moyenne de localisation fréquentielle des paquets d'ondelettes.

Ai Hua Fan (1998)

Revista Matemática Iberoamericana

En utilisant le théorème de Ruelle d'opérateur de transfert, nous démontrons que la moyenne 2-k Σn=02k-1 ||^wn||L1 de la localisation fréquentielle pour les paquets d'ondelettes admet un équivalent de la forme cρk (c &gt; 0, 1 &lt; ρ &lt; √2). Cela améliore une inégalité antérieurement obtenue par Coifman, Meyer et Wickerhauser. Des estimations numériques de ρ sont obtenues pour des filtres de Daubechies.

Moyennes sphériques et opérateur de Helmholtz itéré

Francisco Vieli (1995)

Colloquium Mathematicae

Il est bien connu qu’une fonction f sur n est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut Γ ( n / 2 ) ( r c / 2 ) ( 2 - n ) / 2 J ( n - 2 ) / 2 ( r c ) · f ( x ) . Dans ce travail, nous généralisons ces résultats à l’opérateur ( Δ + c ) k où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...

Currently displaying 1541 – 1560 of 3638