Displaying 1961 – 1980 of 3651

Showing per page

On the behavior near the origin of double sine series with monotone coefficients

Xhevat Z. Krasniqi (2009)

Mathematica Bohemica

In this paper we obtain estimates of the sum of double sine series near the origin, with monotone coefficients tending to zero. In particular (if the coefficients a k , l satisfy certain conditions) the following order equality is proved g ( x , y ) m n a m , n + m n l = 1 n - 1 l a m , l + n m k = 1 m - 1 k a k , n + 1 m n l = 1 n - 1 k = 1 m - 1 k l a k , l , where x ( π m + 1 , π m ] , y ( π n + 1 , π n ] , m , n = 1 , 2 , .

On the best ranges for A p + and R H r +

María Silvina Riveros, A. de la Torre (2001)

Czechoslovak Mathematical Journal

In this paper we study the relationship between one-sided reverse Hölder classes R H r + and the A p + classes. We find the best possible range of R H r + to which an A 1 + weight belongs, in terms of the A 1 + constant. Conversely, we also find the best range of A p + to which a R H + weight belongs, in terms of the R H + constant. Similar problems for A p + , 1 < p < and R H r + , 1 < r < are solved using factorization.

On the Bézout equation in the ring of periodic distributions

Rudolf Rupp, Amol Sasane (2016)

Topological Algebra and its Applications

A corona type theorem is given for the ring D'A(Rd) of periodic distributions in Rd in terms of the sequence of Fourier coefficients of these distributions,which have at most polynomial growth. It is also shown that the Bass stable rank and the topological stable rank of D'A(Rd) are both equal to 1.

On the boundary convergence of solutions to the Hermite-Schrödinger equation

Peter Sjögren, J. L. Torrea (2010)

Colloquium Mathematicae

In the half-space d × , consider the Hermite-Schrödinger equation i∂u/∂t = -Δu + |x|²u, with given boundary values on d . We prove a formula that links the solution of this problem to that of the classical Schrödinger equation. It shows that mixed norm estimates for the Hermite-Schrödinger equation can be obtained immediately from those known in the classical case. In one space dimension, we deduce sharp pointwise convergence results at the boundary by means of this link.

On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces

Ali Akbulut, Vagif Guliyev, Rza Mustafayev (2012)

Mathematica Bohemica

In the paper we find conditions on the pair ( ω 1 , ω 2 ) which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space p , ω 1 to another p , ω 2 , 1 < p < , and from the space 1 , ω 1 to the weak space W 1 , ω 2 . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.

On the bundle convergence of double orthogonal series in noncommutative L 2 -spaces

Ferenc Móricz, Barthélemy Le Gac (2000)

Studia Mathematica

The notion of bundle convergence in von Neumann algebras and their L 2 -spaces for single (ordinary) sequences was introduced by Hensz, Jajte, and Paszkiewicz in 1996. Bundle convergence is stronger than almost sure convergence in von Neumann algebras. Our main result is the extension of the two-parameter Rademacher-Men’shov theorem from the classical commutative case to the noncommutative case. To our best knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple series....

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization founded...

On the Choquet integrals associated to Bessel capacities

Keng Hao Ooi (2022)

Czechoslovak Mathematical Journal

We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.

Currently displaying 1961 – 1980 of 3651