The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 661 –
680 of
693
We obtain weighted boundedness, with weights of the type , δ > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, , when the parameter α is greater than -1. It is proved that when -1 < α < 0, the maximal operator is of strong type (p,p) if p > 1 and 2(1+δ)/(2+α) < p < 2(1+δ)/(-α), and if α ≥ 0 it is of strong type for 1 < p ≤ ∞ and 2(1+δ)/(2+α) < p.
The behavior at the end points of the intervals where there is strong type is studied...
We prove weighted norm inequalities for the averaging operator Af(x) = 1/x ∫0x f of monotone functions.
Let µ be a Borel measure on Rd which may be non doubling. The only condition that µ must satisfy is µ(B(x, r)) ≤ Crn for all x ∈ Rd, r > 0 and for some fixed n with 0 < n ≤ d. In this paper we introduce a maximal operator N, which coincides with the maximal Hardy-Littlewood operator if µ(B(x, r)) ≈ rn for x ∈ supp(µ), and we show that all n-dimensional Calderón-Zygmund operators are bounded on Lp(w dµ) if and only if N is bounded on Lp(w dµ), for a fixed p ∈ (1, ∞). Also, we prove...
The main purpose of this paper is to use some of the results and techniques in [9] to further investigate weighted norm inequalities for Hardy-Littlewood type maximal operators.
For some pairs of weight functions u, v which satisfy the well-known Muckenhoupt conditions, we derive the boundedness of the maximal fractional operator Ms (0 ≤ s < n) from Lvp to Luq with q < p.
A weighted theory describing Morrey boundedness of fractional integral operators and fractional maximal operators is developed. A new class of weights adapted to Morrey spaces is proposed and a passage to the multilinear cases is covered.
In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander's condition.
Let X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis . Given an operator T from to L¹(X), we consider the vector-valued extension T̃ of T given by . We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give sufficient...
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
We establish weighted sharp maximal function inequalities for a linear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of a commutator on weighted Lebesgue spaces.
We give a weighted version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions. In the proof of our result we use phi-transform of Frazier-Jawerth.
Currently displaying 661 –
680 of
693