Weighted norm inequalities for general maximal operators.
The main purpose of this paper is to use some of the results and techniques in [9] to further investigate weighted norm inequalities for Hardy-Littlewood type maximal operators.
The main purpose of this paper is to use some of the results and techniques in [9] to further investigate weighted norm inequalities for Hardy-Littlewood type maximal operators.
For some pairs of weight functions u, v which satisfy the well-known Muckenhoupt conditions, we derive the boundedness of the maximal fractional operator Ms (0 ≤ s < n) from Lvp to Luq with q < p.
A weighted theory describing Morrey boundedness of fractional integral operators and fractional maximal operators is developed. A new class of weights adapted to Morrey spaces is proposed and a passage to the multilinear cases is covered.
In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander's condition.
Let X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis . Given an operator T from to L¹(X), we consider the vector-valued extension T̃ of T given by . We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give sufficient...
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
We establish weighted sharp maximal function inequalities for a linear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of a commutator on weighted Lebesgue spaces.
We give a weighted version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions. In the proof of our result we use phi-transform of Frazier-Jawerth.
Let be the Ariõ-Muckenhoupt weight class which controls the weighted -norm inequalities for the Hardy operator on non-increasing functions. We replace the constant p by a function p(x) and examine the associated -norm inequalities of the Hardy operator.
We prove some weighted weak type (1,1) inequalities for certain singular integrals and Littlewood-Paley functions.
We give an A_p type characterization for the pairs of weights (w,v) for which the maximal operator Mf(y) = sup 1/(b-a) ʃ_a^b |f(x)|dx, where the supremum is taken over all intervals [a,b] such that 0 ≤ a ≤ y ≤ b/ψ(b-a), is of weak type (p,p) with weights (w,v). Here ψ is a nonincreasing function such that ψ(0) = 1 and ψ(∞) = 0.
We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.