The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study sufficient conditions on the weight w, in terms of membership in the classes, for the spline wavelet systems to be unconditional bases of the weighted space . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
We investigate the construction of Carleson measures from families of multilinear integral operators applied to tuples of and BMO functions. We show that if the family of multilinear operators has cancellation in each variable, then for BMO functions b₁, ..., bₘ, the measure is Carleson. However, if the family of multilinear operators has cancellation in all variables combined, this result is still valid if are functions, but it may fail if are unbounded BMO functions, as we indicate...
The theory of Carleson measures, stopping time arguments, and atomic decompositions has been well-established in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of this paper is to demonstrate that the two theories are in fact closely related, by taking existing results and reproving them in a unified setting. In particular we give a dyadic version of extrapolation...
Carleson's Theorem from 1965 states that the partial Fourier sums of a square integrable function converge pointwise. We prove an equivalent statement on the real line, following the method developed by the author and C. Thiele. This theorem, and the proof presented, is at the center of an emerging theory which complements the statement and proof of Carleson's theorem. An outline of these variations is also given.
It is shown that the operator below maps into itself for 1 < p < ∞.
.
The supremum over b alone gives the famous theorem of L. Carleson [2] on the pointwise convergence of Fourier series. The supremum over a alone is an observation of E. M. Stein [12]. The method of proof builds upon Stein’s observation and an approach to Carleson’s theorem jointly developed by the author and C. M. Thiele [7].
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with -base and data in , a subspace of 1. We derive our results, considering the action of an adjoint operator on , a predual of , and using known properties of this last space.
We consider central versions of the space studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.
Let be a metric space with a doubling measure, be a boundedly compact metric space and be a Lebesgue precise mapping whose upper gradient belongs to the Lorentz space , . Let be a set of measure zero. Then for -a.e. , where is the -dimensional Hausdorff measure and is the -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...
In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on when belongs to the Muckenhoupt’s class , . In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein...
In this paper, the boundedness of a large class of sublinear commutator operators generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces with the weight function belonging to Muckenhoupt’s class is studied. When and , sufficient conditions on the pair which ensure the boundedness of the operator from to are found. In all cases the conditions for the boundedness of are given in terms of Zygmund-type integral inequalities on , which do not require...
Currently displaying 1 –
20 of
44