The search session has expired. Please query the service again.
Characterizations are obtained for those pairs of weight functions u and v for which the operators with a and b certain non-negative functions are bounded from to , 0 < p,q < ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.
We prove that the elliptic maximal function maps the Sobolev space W4,eta(R2) into L4(R2) for all eta > 1/6. The main ingredients of the proof are an analysis of the intersectiQn properties of elliptic annuli and a combinatorial method of Kolasa and Wolff.
We prove the boundedness of the Marcinkiewicz integral operators on under the condition that . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.
In this paper we deal with several characterizations of the Hardy-Sobolev spaces in the unit ball of Cn, that is, spaces of holomorphic functions in the ball whose derivatives up to a certain order belong to the classical Hardy spaces. Some of our characterizations are in terms of maximal functions, area functions or Littlewood-Paley functions involving only complex-tangential derivatives. A special case of our results is a characterization of Hp itself involving only complex-tangential derivatives....
Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that
and
,
where is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.
We define Beurling-Orlicz spaces, weak Beurling-Orlicz spaces, Herz-Orlicz spaces, weak Herz-Orlicz spaces, central Morrey-Orlicz spaces and weak central Morrey-Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy-Littlewood maximal function on these spaces are investigated.
The famous result of Muckenhoupt on the connection between weights w in Ap-classes and the boundedness of the maximal operator in Lp(w) is extended to the case p = ∞ by the introduction of the geometrical maximal operator. Estimates of the norm of the maximal operators are given in terms of the Ap-constants. The equality of two differently defined A∞-constants is proved. Thereby an answer is given to a question posed by R. Johnson. For non-increasing functions on the positive real line a parallel...
Currently displaying 1 –
20 of
43