Vector-valued multipliers on stratified groups.
Vector-valued pseudo almost periodic functions
Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.
Volume of spheres in doubling metric measured spaces and in groups of polynomial growth
Let be a compactly generated locally compact group and let be a compact generating set. We prove that if has polynomial growth, then is a Følner sequence and we give a polynomial estimate of the rate of decay of Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a -pointwise...
Walsh-Marcinkiewicz means and Hardy spaces
The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space H p, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space H p, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means.
Watts Cohomology for a Class of Banach Aglebras and the Duality of Compact Abelian Groups.
Wave equation and multiplier estimates on ax + b groups
Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...
Wave front set for positive operators and for positive elements in non-commutative convolution algebras
Let WF⁎ be the wave front set with respect to , quasi analyticity or analyticity, and let K be the kernel of a positive operator from to ’. We prove that if ξ ≠ 0 and (x,x,ξ,-ξ) ∉ WF⁎(K), then (x,y,ξ,-η) ∉ WF⁎(K) and (y,x,η,-ξ) ∉ WF⁎(K) for any y,η. We apply this property to positive elements with respect to the weighted convolution , where is appropriate, and prove that if for every and (0,ξ) ∉ WF⁎(u), then (x,ξ) ∉ WF⁎(u) for any x.
«Wave packets» sur les groupes nilpotents
Wavelet transforms and symmetric tube domains.
w*-closed subalgebras of
Weak Almost Periodicity of Haar Measurable Functions.
Weak almost Periodicity on C*-Algebras.
Weak amenability and semidirect products in simple Lie groups.
Weak amenability of general measure algebras
We study the weak amenability of a general measure algebra M(X) on a locally compact space X. First we show that not all general measure multiplications are separately weak* continuous; moreover, under certain conditions, weak amenability of M(X)** implies weak amenability of M(X). The main result of this paper states that there is a general measure algebra M(X) such that M(X) and M(X)** are weakly amenable without X being a discrete topological space.
Weak amenability of the second dual of a Banach algebra
It is known that a Banach algebra inherits amenability from its second Banach dual **. No example is yet known whether this fails if one considers the weak amenability instead, but the property is known to hold for the group algebra L¹(G), the Fourier algebra A(G) when G is amenable, the Banach algebras which are left ideals in **, the dual Banach algebras, and the Banach algebras which are Arens regular and have every derivation from into * weakly compact. In this paper, we extend this class of...
Weak amenability of the universal covering group fo SU (1, n).
Weak amenability of weighted group algebras on some discrete groups
Weak amenability of ℓ¹(G,ω) for commutative groups G was completely characterized by N. Gronbaek in 1989. In this paper, we study weak amenability of ℓ¹(G,ω) for two important non-commutative locally compact groups G: the free group ₂, which is non-amenable, and the amenable (ax + b)-group. We show that the condition that characterizes weak amenability of ℓ¹(G,ω) for commutative groups G remains necessary for the non-commutative case, but it is sufficient neither for ℓ¹(₂,ω) nor for ℓ¹((ax + b),ω)...
Weak difference properties of higher orders for the class
Weak* properties of weighted convolution algebras II
We show that if ϕ is a continuous homomorphism between weighted convolution algebras on ℝ⁺, then its extension to the corresponding measure algebras is always weak* continuous. A key step in the proof is showing that our earlier result that normalized powers of functions in a convolution algebra on ℝ⁺ go to zero weak* is also true for most measures in the corresponding measure algebra. For some algebras, we can determine precisely which measures have normalized powers converging to zero weak*. We...