Displaying 1881 – 1900 of 2300

Showing per page

Tempered reductive homogeneous spaces

Yves Benoist, Toshiyuki Kobayashi (2015)

Journal of the European Mathematical Society

Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geometrically the best even integer p for which the representation of G in L 2 ( G / H ) is almost L p . As an application, we give a criterion which detects whether this representation is tempered.

Tensor products and p-induction of representations on Banach spaces.

Philippe Jaming, William Moran (2000)

Collectanea Mathematica

In this paper we obtain Lp versions of the classical theorems of induced representations, namely, the inducing in stages theorem, the Kronecker product theorem, the Frobenius Reciprocity theorem and the subgroup theorem. In doing so we adopt the tensor product approach of Rieffel to inducing.

Testing Cayley graph densities

Goulnara N. Arzhantseva, Victor S. Guba, Martin Lustig, Jean-Philippe Préaux (2008)

Annales mathématiques Blaise Pascal

We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m -generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2 m . We test amenable and non-amenable...

The almost Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Colloquium Mathematicae

Let G be a metrizable, compact abelian group and let Λ be a subset of its dual group Ĝ. We show that C Λ ( G ) has the almost Daugavet property if and only if Λ is an infinite set, and that L ¹ Λ ( G ) has the almost Daugavet property if and only if Λ is not a Λ(1) set.

Currently displaying 1881 – 1900 of 2300