The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For any connected Lie group G and any Laplacian Λ = X²₁ + ⋯ + X²ₙ ∈ 𝔘𝔤 (X₁,...,Xₙ being a basis of 𝔤) one can define the commutant 𝔅 = 𝔅(Λ) of Λ in the convolution algebra ℒ¹(G) as well as the commutant ℭ(Λ) in the group C*-algebra C*(G). Both are involutive Banach algebras. We study these algebras in the case of a "distinguished Laplacian" on the "Iwasawa part AN" of a semisimple Lie group. One obtains a fairly good description of these algebras by objects derived from the semisimple group....
Semisimple commutative Banach algebras 𝓐 admitting exactly one uniform norm (not necessarily complete) are investigated. 𝓐 has this Unique Uniform Norm Property iff the completion U(𝓐) of 𝓐 in the spectral radius r(·) has UUNP and, for any non-zero spectral synthesis ideal ℐ of U(𝓐), ℐ ∩ 𝓐 is non-zero. 𝓐 is regular iff U(𝓐) is regular and, for any spectral synthesis ideal ℐ of 𝓐, 𝓐/ℐ has UUNP iff U(𝓐) is regular and for any spectral synthesis ideal ℐ of U(𝓐), ℐ = k(h(𝓐 ∩ ℐ)) (hulls...
Given a locally compact abelian group G with a measurable weight ω, it is shown that the Beurling algebra L¹(G,ω) admits either exactly one uniform norm or infinitely many uniform norms, and that L¹(G,ω) admits exactly one uniform norm iff it admits a minimum uniform norm.
Currently displaying 1 –
4 of
4