The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
145
The aim of this paper is to give a q-analogue for complete monotonicity. We apply a classical characterization of Hausdorff moment sequences in terms of positive definiteness and complete monotonicity, adapted to the q-situation. The method due to Maserick and Szafraniec that does not need moments turns out to be useful. A definition of a q-moment sequence appears as a by-product.
A convolution operator, bounded on , is bounded on , with the same operator norm, if and are conjugate exponents. It is well known that this fact is false if we replace with a general non-commutative locally compact group . In this paper we give a simple construction of a convolution operator on a suitable compact group , wich is bounded on for every and is unbounded on if .
We show that Boehmians defined over open sets of ℝⁿ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
Currently displaying 61 –
80 of
145