On the solvability of algebraic equations in the field of Mikusinski's operators
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy,is bounded from L2(u) to L2(v).
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.
The Yosida approximation is treated as an inversion formula for the Laplace transform.
Mathematics Subject Classification 2010: 42C40, 44A12.In 1986 Y. Nievergelt suggested a simple formula which allows to reconstruct a continuous compactly supported function on the 2-plane from its Radon transform. This formula falls into the scope of the classical convolution-backprojection method. We show that elementary tools of fractional calculus can be used to obtain more general inversion formulas for the k-plane Radon transform of continuous and L^p functions on R^n for all 1 ≤ k < n....
2000 Mathematics Subject Classification: 44A40, 44A35A direct algebraic construction of a family of operational calculi for the Euler differential operator δ = t d/dt is proposed. It extends the Mikusiński's approach to the Heaviside operational calculus for the case when the classical Duhamel convolution is replaced by the convolution ...
We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.