The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 24

Showing per page

A certain integral-recurrence equation with discrete-continuous auto-convolution

Mircea I. Cîrnu (2011)

Archivum Mathematicum

Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.

A remark on the asymmetry of convolution operators

Saverio Giulini (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A convolution operator, bounded on L q ( n ) , is bounded on L p ( n ) , with the same operator norm, if p and q are conjugate exponents. It is well known that this fact is false if we replace n with a general non-commutative locally compact group G . In this paper we give a simple construction of a convolution operator on a suitable compact group G , wich is bounded on L q ( G ) for every q [ 2 , ) and is unbounded on L p ( G ) if p [ 1 , 2 ) .

A sheaf of Boehmians

Jonathan Beardsley, Piotr Mikusiński (2013)

Annales Polonici Mathematici

We show that Boehmians defined over open sets of ℝⁿ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.

A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on n

E. K. Narayanan, S. Thangavelu (2006)

Annales de l’institut Fourier

We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on n . If f ( z ) e 1 4 | z | 2 is a Schwartz class function we show that f is supported in a ball of radius B in n if and only if f × μ r ( z ) = 0 for r > B + | z | for all z n . This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n = 1 we show that the two conditions f × μ r ( z ) = μ r × f ( z ) = 0 for r > B + | z | imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter...

Currently displaying 1 – 20 of 24

Page 1 Next