The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
158
Let be a group endowed with a length function , and let be a linear subspace of . We say that satisfies the Haagerup inequality if there exists constants such that, for any , the convolutor norm of on is dominated by times the norm of . We show that, for , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on . If is a word length function on a finitely generated group , we show that,...
We study the optimal solution of the Monge-Kantorovich mass transport problem between measures whose density functions are convolution with a gaussian measure and a log-concave perturbation of a different gaussian measure. Under certain conditions we prove bounds for the Hessian of the optimal transport potential. This extends and generalises a result of Caffarelli.
We also show how this result fits into the scheme of Barthe to prove Brascamp-Lieb inequalities and thus prove a new generalised Reverse...
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.
2000 Mathematics Subject Classification: 44A40, 44A35A direct algebraic construction of a family of operational calculi for the Euler differential operator δ = t d/dt is proposed. It extends the Mikusiński's approach to the Heaviside operational calculus for the case when the classical Duhamel convolution is replaced by the convolution ...
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05In the paper, the machinery of the Mellin integral transform is applied
to deduce and prove some operational relations for a general operator of the
Erdélyi-Kober type. This integro-differential operator is a composition of
a number of left-hand sided and right-hand sided Erdélyi-Kober derivatives
and integrals. It is referred to in the paper as a mixed operator of the
Erdélyi-Kober type.
For special values of...
2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.After sketching the basic principles of renewal theory we discuss the
classical Poisson process and offer two other processes, namely the renewal
process of Mittag-Leffler type and the renewal process of Wright type, so
named by us because special functions of Mittag-Leffler and of Wright type
appear in the definition of the relevant waiting times. We compare these
three processes with each other, furthermore consider corresponding...
Currently displaying 101 –
120 of
158