The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces
We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.