The problem and degrees of non-reflexivity (II)
In this article we prove for the existence of the -Helmholtz projection in finite cylinders . More precisely, is considered to be given as the Cartesian product of a cube and a bounded domain having -boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in is solved, which implies existence and a representation of the -Helmholtz projection as...
In the literature a Boehmian space containing all right-sided Laplace transformable distributions is defined and studied. Besides obtaining basic properties of this Laplace transform, an inversion formula is also obtained. In this paper we shall improve upon two theorems one of which relates to the continuity of this Laplace transform and the other is concerned with the inversion formula.
It is known that a Banach lattice with order continuous norm contains a copy of if and only if it contains a lattice copy of . The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the - and -cases considered by Lozanovskii, Mekler and Meyer-Nieberg.
In this article we prove the Monotone Convergence Theorem [16].MML identifier: MESFUNC9, version: 7.8.10 4.100.1011
An exact expression for the down norm is given in terms of the level function on all rearrangement invariant spaces and a useful approximate expression is given for the down norm on all rearrangement invariant spaces whose upper Boyd index is not one.
It is proved that the Levi problem for certain locally convex Hausdorff spaces over with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies...