Displaying 481 – 500 of 600

Showing per page

Extension of CR functions to «wedge type» domains

Andrea D'Agnolo, Piero D'Ancona, Giuseppe Zampieri (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X be a complex manifold, S a generic submanifold of X R , the real underlying manifold to X . Let Ω be an open subset of S with Ω analytic, Y a complexification of S . We first recall the notion of Ω -tuboid of X and of Y and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for ¯ b to the extendability of C R functions on Ω to Ω -tuboids of X . Next, if X has complex dimension 2, we give results on extension...

Extension of distributions and representation by derivatives of continuous functions.

Jérôme Lemoine, Jacques Simon (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is proved that any Banach valued distribution on a bounded set can be extended to all of R d if and only if it is a derivative of a uniformly continuous function. A similar result is given for distributions on an unbounded set. An example shows that this does not extend to Frechet valued distributions. This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous function. For sake of completeness, a global representation of a Banach valued distribution...

Extension of multilinear operators on Banach spaces.

Félix Cabello Sánchez, R. García, I. Villanueva (2000)

Extracta Mathematicae

These notes deal with the extension of multilinear operators on Banach spaces. The organization of the paper is as follows. In the first section we study the extension of the product on a Banach algebra to the bidual and some related structures including modules and derivations. Tha approach is elementary and uses the classical Arens' technique. Actually most of the results of section 1 can be easily derived from section 2. In section 2 we consider the problem of extending multilinear forms on a...

Extension of smooth functions in infinite dimensions, I: unions of convex sets

C. J. Atkin (2001)

Studia Mathematica

Let f be a smooth function defined on a finite union U of open convex sets in a locally convex Lindelöf space E. If, for every x ∈ U, the restriction of f to a suitable neighbourhood of x admits a smooth extension to the whole of E, then the restriction of f to a union of convex sets that is strictly smaller than U also admits a smooth extension to the whole of E.

Extension of smooth functions in infinite dimensions II: manifolds

C. J. Atkin (2002)

Studia Mathematica

Let M be a separable C Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a C function, or of a C section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in M, extends to a C function on the whole of M.

Extension of smooth subspaces in Lindenstrauss spaces

V. P. Fonf, P. Wojtaszczyk (2014)

Studia Mathematica

It follows from our earlier results [Israel J. Math., to appear] that in the Gurariy space G every finite-dimensional smooth subspace is contained in a bigger smooth subspace. We show that this property does not characterise the Gurariy space among Lindenstrauss spaces and we provide various examples to show that C(K) spaces do not have this property.

Currently displaying 481 – 500 of 600