Displaying 5681 – 5700 of 13227

Showing per page

Mazur-like topological linear spaces and their products

Miroslav Hušek (1997)

Commentationes Mathematicae Universitatis Carolinae

Topological linear spaces having the property that some sequentially continuous linear maps on them are continuous, are investigated. It is shown that such properties (and close ones, e.g., bornological-like properties) are closed under large products.

Mazur-Orlicz equality

Fon-Che Liu (2008)

Studia Mathematica

A remarkable theorem of Mazur and Orlicz which generalizes the Hahn-Banach theorem is here put in a convenient form through an equality which will be referred to as the Mazur-Orlicz equality. Applications of the Mazur-Orlicz equality to lower barycenters for means, separation principles, Lax-Milgram lemma in reflexive Banach spaces, and monotone variational inequalities are provided.

Mazur-Ulam Theorem

Artur Korniłowicz (2011)

Formalized Mathematics

The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.

M-complete approximate identities in operator spaces

A. Arias, H. Rosenthal (2000)

Studia Mathematica

This work introduces the concept of an M-complete approximate identity (M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cai in Y, then X is a complete M-ideal in Y. It is proved, using ’special’ M-cai’s, that if J is a nuclear ideal in a C*-algebra A, then J is completely complemented in Y for any (isomorphically) locally reflexive operator space Y with J ⊂ Y ⊂ A and...

Measurable functionals on function spaces

J. P. Reus Christensen, J. K. Pachl (1981)

Annales de l'institut Fourier

We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.

Currently displaying 5681 – 5700 of 13227