Banach spaces and bilipschitz maps
We show that a normed space E is a Banach space if and only if there is no bilipschitz map of E onto E ∖ {0}.
We show that a normed space E is a Banach space if and only if there is no bilipschitz map of E onto E ∖ {0}.
We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an...
For a countable ordinal α we denote by the class of separable, reflexive Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by α. We show that each admits a separable, reflexive universal space. We also show that spaces in the class embed into spaces of the same class with a basis. As a consequence we deduce that each is analytic in the Effros-Borel structure of subspaces of C[0,1].
For every α < ω₁ we establish the existence of a separable Banach space whose Szlenk index is and which is universal for all separable Banach spaces whose Szlenk index does not exceed . In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with Tsirelson type upper estimates.
We present simple proofs that spaces of homogeneous polynomials on and provide plenty of natural examples of Banach spaces without the approximation property. By giving necessary and sufficient conditions, our results bring to completion, at least for an important collection of Banach spaces, a circle of results begun in 1976 by R. Aron and M. Schottenloher (1976).
Several results are established about Banach spaces Ӿ which can be renormed to have the uniform Kadec-Klee property. It is proved that all such spaces have the complete continuity property. We show that the renorming property can be lifted from Ӿ to the Lebesgue-Bochner space if and only if Ӿ is super-reflexive. A basis characterization of the renorming property for dual Banach spaces is given.