On Banach spaces X for which
The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows:...
We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.
Define as the subspace of consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space consisting of all harmonic E*-valued functions g such that is bounded for some m>0. Then the dual is represented by through , . This extends the results of S. Bell in the scalar case.
In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.