The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 6601 – 6620 of 13227

Showing per page

On convex functions in c0(w1).

Petr Hájek (1996)

Collectanea Mathematica

It is proved that no convex and Fréchet differentiable function on c0(w1), whose derivative is locally uniformly continuous, attains its minimum at a unique point.

On copies of c 0 in the bounded linear operator space

Juan Carlos Ferrando, J. M. Amigó (2000)

Czechoslovak Mathematical Journal

In this note we study some properties concerning certain copies of the classic Banach space c 0 in the Banach space X , Y of all bounded linear operators between a normed space X and a Banach space Y equipped with the norm of the uniform convergence of operators.

On cyclic α(·)-monotone multifunctions

S. Rolewicz (2000)

Studia Mathematica

Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let Γ : X 2 Φ be a maximal cyclic α(·)-monotone multifunction with non-empty values. We give a sufficient condition on α(·) and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ-convex with modulus α(·), such that Γ is the weak Φ-subdifferential of f with modulus α(·), Γ ( x ) = Φ - α f | x .

Currently displaying 6601 – 6620 of 13227