The search session has expired. Please query the service again.
Displaying 741 –
760 of
1284
Let be a complex Banach space, with the unit ball . We study the spectrum of a bounded weighted composition operator on determined by an analytic symbol with a fixed point in such that is a relatively compact subset of , where is an analytic function on .
The paper is concerned with the spectral analysis for the class of linear operators in non-archimedean Hilbert space, where is a diagonal operator and is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra.
We study general Hilbert modules over the disc algebra and exhibit necessary spectral conditions for the vanishing of certain associated extension groups. In particular, this sheds some light on the problem of identifying the projective Hilbert modules. Part of our work also addresses the classical derivation problem.
The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that...
Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).
Given an orthogonal projection P and a free unitary Brownian motion in a W*-non commutative probability space such that Y and P are *-free in Voiculescu’s sense, we study the spectral distribution νₜ of Jₜ = PYₜPYₜ*P in the compressed space. To this end, we focus on the spectral distribution μₜ of the unitary operator SYₜSYₜ*, S = 2P - 1, whose moments are related to those of Jₜ via a binomial-type expansion already obtained by Demni et al. [Indiana Univ. Math. J. 61 (2012)]. In this connection,...
In this survey, we summarise some of the recent progress on the structure of spectral isometries between C*-algebras.
Currently displaying 741 –
760 of
1284