Théorèmes de factorisation dans les algèbres normées complètes non associatives
Nous donnons dans ce travail une caractérisation des algèbres (semi-simples) localement-convexes complètes faiblement topologisées au sens de S. Warner, ce qui clarifie, entre autres, plusiers résultats données sur certaines classes d'algèbres à base étudiées par de nombreux auteurs ([2], [6], [7]) pour approcher le problème de E. A. Michael sur la continuité des caractères dans les algèbres de Fréchet [9].
It is shown that the methods developed in an earlier paper of the author about a Dirichlet problem for the Silov boundary [Annales Inst. Fourier, 11 (1961)] lead in a new and natural way to the most important results about the convergence of positive linear operators on spaces of continuous functions defined on a compact space. Choquet’s notion of an adapted space of continuous functions in connection with results of Mokobodzki-Sibony opens the possibility of extending these results to the case...
Sufficient conditions are given in order that, for a bounded closed convex subset of a locally convex space , the set of continuous functions from the compact space into , is the uniformly closed convex hull in of its extreme points. Applications are made to the unit ball of bounded (or compact, or weakly compact) operators from certain Banach spaces into .
Standard facts about separating linear functionals will be used to determine how two cones and and their duals and may overlap. When is linear and and are cones, these results will be applied to and , giving a unified treatment of several theorems of the alternate which explain when contains an interior point of . The case when is the space of Hermitian matrices, is the positive semidefinite matrices, and yields new and known results about the existence of block diagonal...