Displaying 81 – 100 of 397

Showing per page

Derivability, variation and range of a vector measure

L. Rodríguez-Piazza (1995)

Studia Mathematica

We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where we proved...

Derivations into iterated duals of Banach algebras

H. Dales, F. Ghahramani, N. Grønbæek (1998)

Studia Mathematica

We introduce two new notions of amenability for a Banach algebra A. The algebra A is n-weakly amenable (for n ∈ ℕ) if the first continuous cohomology group of A with coefficients in the n th dual space A ( n ) is zero; i.e., 1 ( A , A ( n ) ) = 0 . Further, A is permanently weakly amenable if A is n-weakly amenable for each n ∈ ℕ. We begin by examining the relations between m-weak amenability and n-weak amenability for distinct m,n ∈ ℕ. We then examine when Banach algebras in various classes are n-weakly amenable; we study...

Derivations mapping into the socle, III

Nadia Boudi, Peter Šemrl (2010)

Studia Mathematica

Let A be a Banach algebra, and let d: A → A be a continuous derivation such that each element in the range of d has a finite spectrum. In a series of papers it has been proved that such a derivation is an inner derivation implemented by an element from the socle modulo the radical of A (a precise formulation of this statement can be found in the Introduction). The aim of this paper is twofold: we extend this result to the case where d is not necessarily continuous, and we give a complete description...

Derivations on Jordan-Banach algebras

A. Villena (1996)

Studia Mathematica

We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.

Derivations with a hereditary domain, II

A. Villena (1998)

Studia Mathematica

The nilpotency of the separating subspace of an everywhere defined derivation on a Banach algebra is an intriguing question which remains still unsolved, even for commutative Banach algebras. On the other hand, closability of partially defined derivations on Banach algebras is a fundamental problem motivated by the study of time evolution of quantum systems. We show that the separating subspace S(D) of a Jordan derivation defined on a subalgebra B of a complex Banach algebra A satisfies B [ B S ( D ) ] B R a d B ( A ) provided...

Derivative of the Donsker delta functionals

Herry Pribawanto Suryawan (2019)

Mathematica Bohemica

We prove that derivatives of any finite order of Donsker's delta functionals are well-defined elements in the space of Hida distributions. We also show the convergence to the derivative of Donsker's delta functionals of two different approximations. Finally, we present an existence result of finite product and infinite series of the derivative of the Donsker delta functionals.

Currently displaying 81 – 100 of 397