Transition probabilities and trace functions for C*-algebras.
Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if and are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that , . We prove that some proper multiplicative subgroups of G have this property.
We study the question of when the set of norm attaining functionals on a Banach space is a linear space. We show that this property is preserved by factor reflexive proximinal subspaces in spaces and generally by taking quotients by proximinal subspaces. We show, for (ℓ₂) and c₀-direct sums of families of reflexive spaces, the transitivity of proximinality for factor reflexive subspaces. We also investigate the linear structure of the set of norm attaining functionals on hyperplanes of c₀ and...
The idempotent multipliers on Sobolev spaces on the torus in the L¹ and uniform norms are characterized in terms of the coset ring of the dual group of the torus. This result is deduced from a more general theorem concerning certain translation invariant subspaces of vector-valued function spaces on tori.
We study convolution operators bounded on the non-normable Lorentz spaces of the real line and the torus. Here 0 < q < 1. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on . In particular, when the positions of the atoms of a discrete measure are linearly independent over the rationals,...