On the distance between two Chebyshev sets in Banach spaces.
Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then , where is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the -norm by an arbitrary N-norm. This...
Let be an Archimedean -group. We denote by and the divisible hull of and the distributive radical of , respectively. In the present note we prove the relation . As an application, we show that if is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice.
A uni-nullnorm is a special case of 2-uninorms obtained by letting a uninorm and a nullnorm share the same underlying t-conorm. This paper is mainly devoted to solving the distributivity equation between uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms and some binary operators, such as, continuous t-norms, continuous t-conorms, uninorms, and nullnorms. The new results differ from the previous ones about the distributivity in the class of 2-uninorms, which have not yet...
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain , . We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the -Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of . We build an anti-holomorphic embedding of in the complex projective Hilbert space and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes....
Motivated by recent developments on calculus in metric measure spaces , we prove a general duality principle between Fuglede’s notion [15] of -modulus for families of finite Borel measures in and probability measures with barycenter in , with dual exponent of . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...