The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1381 –
1400 of
1952
The paper is devoted to a study of some aspects of the theory of (topological) Riesz space valued measures. The main topics considered are the following. First, the problem of existence (and, particularly, the so-called proper existence) of the modulus of an order bounded measure, and its relation to a similar problem for the induced integral operator. Second, the question of how properties of such a measure like countable additivity, exhaustivity or so-called absolute exhaustivity, or the properties...
In this article, two results regarding the Moore-Penrose inverse in the frame of C*-algebras are considered. In first place, a characterization of the so-called reverse order law is given, which provides a solution of a problem posed by M. Mbekhta. On the other hand, Moore-Penrose hermitian elements, that is C*-algebra elements which coincide with their Moore-Penrose inverse, are introduced and studied. In fact, these elements will be fully characterized both in the Hilbert space and in the C*-algebra...
The non-commutative neutrix product of the distributions and is proved to exist for and is evaluated for . The existence of the non-commutative neutrix product of the distributions and is then deduced for and evaluated for .
We consider the question of whether the trigonometric system can be equivalent to some rearrangement of the Walsh system in for some p ≠ 2. We show that this question is closely related to a combinatorial problem. This enables us to prove non-equivalence for a number of rearrangements. Previously this was known for the Walsh-Paley order only.
How can one recognize when a metric space is bilipschitz equivalent to an Euclidean space? One should not take the abstraction of metric spaces too seriously here; subsets of Rn are already quite interesting. It is easy to generate geometric conditions which are necessary for bilipschitz equivalence, but it is not clear that such conditions should ever be sufficient. The main point of this paper is that the optimistic conjectures about the existence of bilipschitz parametrizations are wrong. In...
Let C(Ω) be the algebra of all complex-valued continuous functions on a topological space Ω where C(Ω) contains unbounded functions. First it is shown that C(Ω) cannot have a Banach algebra norm. Then it is shown that, for certain Ω, C(Ω) cannot possess an (incomplete) normed algebra norm. In particular, this is so for where ℝ is the reals.
Currently displaying 1381 –
1400 of
1952