The search session has expired. Please query the service again.

Displaying 1821 – 1840 of 1952

Showing per page

Operators determining the complete norm topology of C(K)

A. Villena (1997)

Studia Mathematica

For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and x 0 A , we show that every complete norm on A which makes continuous the multiplication by x 0 is equivalent to · provided that x 0 - 1 ( λ ) has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).

Operators on C(ω^α) which do not preserve C(ω^α)

Dale Alspach (1997)

Fundamenta Mathematicae

It is shown that if α,ζ are ordinals such that 1 ≤ ζ < α < ζω, then there is an operator from C ( ω ω α ) onto itself such that if Y is a subspace of C ( ω ω α ) which is isomorphic to C ( ω ω α ) , then the operator is not an isomorphism on Y. This contrasts with a result of J. Bourgain that implies that there are uncountably many ordinals α for which for any operator from C ( ω ω α ) onto itself there is a subspace of C ( ω ω α ) which is isomorphic to C ( ω ω α ) on which the operator is an isomorphism.

Operators on Lorentz sequence spaces

Subhash Chander Arora, Gopal Datt, Satish Verma (2009)

Mathematica Bohemica

Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces l ( p , q ) , 1 < p , 1 q is presented.

Operators on the stopping time space

Dimitris Apatsidis (2015)

Studia Mathematica

Let S¹ be the stopping time space and ℬ₁(S¹) be the Baire-1 elements of the second dual of S¹. To each element x** in ℬ₁(S¹) we associate a positive Borel measure μ x * * on the Cantor set. We use the measures μ x * * : x * * ( S ¹ ) to characterize the operators T: X → S¹, defined on a space X with an unconditional basis, which preserve a copy of S¹. In particular, if X = S¹, we show that T preserves a copy of S¹ if and only if μ T * * ( x * * ) : x * * ( S ¹ ) is non-separable as a subset of ( 2 ) .

Operators preserving ideals in C*-algebras

V. Shul'Man (1994)

Studia Mathematica

The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.

Operators whose adjoints are quasi p-nuclear

J. M. Delgado, C. Piñeiro, E. Serrano (2010)

Studia Mathematica

For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with K α x : ( α ) B p ' . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.

Currently displaying 1821 – 1840 of 1952