Displaying 1921 – 1940 of 1952

Showing per page

Orlicz spaces, α-decreasing functions, and the Δ₂ condition

Gary M. Lieberman (2004)

Colloquium Mathematicae

We prove some quantitatively sharp estimates concerning the Δ₂ and ∇₂ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.

Orlicz-Morrey spaces and the Hardy-Littlewood maximal function

Eiichi Nakai (2008)

Studia Mathematica

We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.

Orthogonality in normed linear spaces: a classification of the different concepts and some open problems.

Carlos Benítez Rodríguez (1989)

Revista Matemática de la Universidad Complutense de Madrid

Orthogonality in inner products is a binary relation that can be expressed in many ways without explicit mention to the inner product of the space. Great part of such definitions have also sense in normed linear spaces. This simple observation is at the base of many concepts of orthogonality in these more general structures. Various authors introduced such concepts over the last fifty years, although the origins of some of the most interesting results that can be obtained for these generalized concepts...

Orthogonally additive functionals on B V

Khaing Aye Khaing, Peng Yee Lee (2004)

Mathematica Bohemica

In this paper we give a representation theorem for the orthogonally additive functionals on the space B V in terms of a non-linear integral of the Henstock-Kurzweil-Stieltjes type.

Orthogonally additive mappings on Hilbert modules

Dijana Ilišević, Aleksej Turnšek, Dilian Yang (2014)

Studia Mathematica

We study the representation of orthogonally additive mappings acting on Hilbert C*-modules and Hilbert H*-modules. One of our main results shows that every continuous orthogonally additive mapping f from a Hilbert module W over 𝓚(𝓗) or 𝓗𝓢(𝓗) to a complex normed space is of the form f(x) = T(x) + Φ(⟨x,x⟩) for all x ∈ W, where T is a continuous additive mapping, and Φ is a continuous linear mapping.

Currently displaying 1921 – 1940 of 1952