Displaying 1901 – 1920 of 1952

Showing per page

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Orlicz and unconditionally convergent series in L¹

J. Diestel (2004)

Banach Center Publications

We revisit Orlicz's proof of the square summability of the norms of the terms of an unconditionally convergent series in L¹. The result is then used to motivate abstract generalizations and concrete improvements.

Orlicz boundedness for certain classical operators

E. Harboure, O. Salinas, B. Viviani (2002)

Colloquium Mathematicae

Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M Ω α , associated to an open bounded set Ω, to be bounded from the Orlicz space L ψ ( Ω ) into L ϕ ( Ω ) , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator I Ω α , 0...

Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data

Alberto Fiorenza, Alain Prignet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence u n , which is solution of - div ( a ( x , 𝔻 u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of 𝐑 N and u n = 0 on Ω , when f n tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N -function Φ , and prove a non-existence result.

Orlicz capacities and applications to some existence questions for elliptic pdes having measure data

Alberto Fiorenza, Alain Prignet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence un, which is solution of - div ( a ( x , u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of RN and un= 0 on ∂Ω, when fn tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N-function Φ, and prove a non-existence result.

Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov, V. I. Chilin, R. Z. Abdullaev (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded.

Diego Gallardo (1988)

Publicacions Matemàtiques

Let M be the Hardy-Littlewood maximal operator defined by:Mf(x) = supx ∈ Q 1/|Q| ∫Q |f| dx, (f ∈ Lloc(Rn)),where the supreme is taken over all cubes Q containing x and |Q| is the Lebesgue measure of Q. In this paper we characterize the Orlicz spaces Lφ*, associated to N-functions φ, such that M is bounded in Lφ*. We prove that this boundedness is equivalent to the complementary N-function ψ of φ satisfying the Δ2-condition in [0,∞), that is, sups&gt;0 ψ(2s) / ψ(s) &lt; ∞.

Currently displaying 1901 – 1920 of 1952