The search session has expired. Please query the service again.
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
The aim of this paper is to discuss the concept of near smoothness in some Banach sequence spaces.
Nearly smooth points and near smoothness in Orlicz spaces are characterized. It is worth to notice that in the nonatomic case smooth points and nearly smooth points are the same, but in the sequence case they differ.
Two properties on projective tensor products are introduced and briefly studied. We apply them to give sufficient conditions to assure the non-containment of l1 in a projective tensor product of Banach spaces.
It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.
We prove that if 𝓒 is a family of separable Banach spaces which is analytic with respect to the Effros Borel structure and no X ∈ 𝓒 is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for 𝓒 but not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.
For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.
The well known Bishop-Phelps Theorem asserts that the set of norm attaining linear forms on a Banach space is dense in the dual space [3]. This note is an outline of recent results by Y. S. Choi [5] and C. Finet and the author [7], which clarify the relation between two different ways of extending this theorem.
Let be the class of Banach spaces X for which every weakly quasi-continuous mapping f: A → X defined on an α-favorable space A is norm continuous at the points of a dense subset of A. We will show that this class is stable under c₀-sums and -sums of Banach spaces for 1 ≤ p < ∞.
Every Orlicz space equipped with Orlicz norm has weak sum property, therefore, it has weakly normal structure and fixed point property. A criterion of sum property also of normal structure for such spaces is given as well, which shows that every Orlicz space has isonormal structure.
Let ϕ: ℝ → ℝ₊ ∪ 0 be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by
u₀ = supu: ϕ is linear on (0,u), v₀=supv: w is constant on (0,v)
(where sup∅ = 0). We prove the following theorem.
Theorem. Suppose that (respectively, ) is an order continuous Lorentz-Orlicz space.
(1) has normal structure if and only if u₀ = 0 (respectively, (2) has weakly normal structure if and only if .
We give a polynomial version of Shmul'yan's Test, characterizing the polynomials that strongly attain their norm as those at which the norm is Fréchet differentiable. We also characterize the Gateaux differentiability of the norm. Finally we study those properties for some classical Banach spaces.
Currently displaying 1 –
20 of
35