The search session has expired. Please query the service again.
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces and the subspace of all compact operators is an -ideal in the space of all continuous linear operators whenever and are - and -ideals in and , respectively, with and . We also prove that the -ideal in is separably determined. Among others, our results complete and improve some well-known results...
Bessaga and Pełczyński showed that if embeds in the dual of a Banach space X, then embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of contains a copy of that is complemented in . Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of contains a copy of that is complemented in . In this note a traditional sliding hump argument is used to establish a simple mapping property of which simultaneously...
This work introduces the concept of an M-complete approximate identity (M-cai) for a given operator subspace X of an operator space Y. M-cai’s generalize central approximate identities in ideals in C*-algebras, for it is proved that if X admits an M-cai in Y, then X is a complete M-ideal in Y. It is proved, using ’special’ M-cai’s, that if J is a nuclear ideal in a C*-algebra A, then J is completely complemented in Y for any (isomorphically) locally reflexive operator space Y with J ⊂ Y ⊂ A and...
Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.
An ellipse in R2 can be defined as the locus of points for which the sum of the Euclidean distances from the two foci is constant. In this paper we will look at the sets that are obtained by considering in the above definition distances induced by arbitrary norms.
Let X be a closed subspace of c₀. We show that the metric projection onto any proximinal subspace of finite codimension in X is Hausdorff metric continuous, which, in particular, implies that it is both lower and upper Hausdorff semicontinuous.
A metric space (M,d) is said to have the small ball property (sbp) if for every ε₀ > 0 it is possible to write M as the union of a sequence (B(xₙ,rₙ)) of closed balls such that the rₙ are smaller than ε₀ and lim rₙ = 0. We study permanence properties and examples of sbp. The main results of this paper are the following: 1. Bounded convex closed sets in Banach spaces have sbp only if they are compact. 2. Precisely the finite-dimensional Banach spaces have sbp. (More generally: a complete metric...
We obtain theorems of metrization and quasi-metrization for several topologies of weak* type on the unit ball of the dual of any separable quasi-normed cone. This is done with the help of an appropriate version of the Alaoglu theorem which is also obtained here.
Currently displaying 1 –
20 of
34