The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and is bounded outside every larger sector) and has a bounded inverse, then A has a bounded functional calculus in the real interpolation spaces between X and the domain of the operator itself.
Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e.the spectrum of A is contained in a sector of angle 2ω, symmetric about the real positive axis, and is bounded outside every larger sector), then A has a bounded functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.
In a previous paper the authors developed an H¹-BMO theory for unbounded metric measure spaces (M,ρ,μ) of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class...
We establish new results on the space BV of functions with bounded variation. While it is well known that this space admits no unconditional basis, we show that it is almost characterized by wavelet expansions in the following sense: if a function f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class of weak-l1 type estimates. These weak estimates can be employed to prove many interesting results. We use them to identify the interpolation spaces between BV and Sobolev...
2000 Mathematics Subject Classification: 46B50, 46B70, 46G12.A new measure of noncompactness on Banach spaces is defined from the Hausdorff measure of noncompactness, giving a quantitative version of a classical result by R. S. Phillips. From the main result, classical results are obtained now as corollaries and we have an application to interpolation theory of Banach spaces.
Currently displaying 1 –
8 of
8