The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Ensembles pics pour A ( D )

Jacques Chaumat, Anne-Marie Chollet (1979)

Annales de l'institut Fourier

Soit D un domaine borné strictement pseudoconvexe dans C n à frontière régulière D . On montre que tout compact d’une sous-variété N de D dont l’espace tangent T p ( N ) en chaque point p de N est contenu dans le sous-espace complexe maximal de T p ( D ) est un ensemble pic pour A ( D ) , la classe des fonctions analytiques dans D dont toutes les dérivées sont continues dans D .

Étude des projections de norme 1 de E ' ' sur E . Unicité de certains préduaux. Applications

Gilles Godefroy (1979)

Annales de l'institut Fourier

On étudie dans ce travail les projections de norme 1 du bidual E ' ' d’un espace de Banach E sur l’image canonique i E ( E ) de E dans E ' ' . On montre que dans un certain nombre de cas, il y a unicité de la projection de norme 1. On en déduit des théorèmes d’existence et d’unicité du prédual de E . On donne ensuite diverses applications, en particulier aux espaces dont la norme est différentiable sur un ensemble dense et aux espaces ne contenant pas 1 ( N ) .

Explicit extension maps in intersections of non-quasi-analytic classes

Jean Schmets, Manuel Valdivia (2005)

Annales Polonici Mathematici

We deal with projective limits of classes of functions and prove that: (a) the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet spaces ( ) ( [ - 1 , 1 ] r ) ; (b) there is no continuous linear extension map from Λ ( ) ( r ) into ( ) ( r ) ; (c) under some additional assumption on , there is an explicit extension map from ( ) ( [ - 1 , 1 ] r ) into ( ) ( [ - 2 , 2 ] r ) by use of a modification of the Chebyshev polynomials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

Extension Gevrey et rigidité dans un secteur

Vincent Thilliez (1995)

Studia Mathematica

We study a rigidity property, at the vertex of some plane sector, for Gevrey classes of holomorphic functions in the sector. For this purpose, we prove a linear continuous version of Borel-Ritt's theorem with Gevrey conditions

Extension maps in ultradifferentiable and ultraholomorphic function spaces

Jean Schmets, Manuel Valdivia (2000)

Studia Mathematica

The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for C -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.

Currently displaying 1 – 20 of 24

Page 1 Next