The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
497
In this paper we consider the regularity problem for the commutators where is a locally integrable function and are the Riesz transforms in the -dimensional euclidean space . More precisely, we prove that these commutators are bounded from into the Besov space for and if and only if is in the -Triebel-Lizorkin space . The reduction of our result to the case gives in particular that the commutators are bounded form into the Sobolev space if and only if is in the -Sobolev...
The first section consists of auxiliary results about nondecreasing real functions. In the second section a new characterization of relatively compact sets of regulated functions in the sup-norm topology is brought, and the third section includes, among others, an analogue of Helly's Choice Theorem in the space of regulated functions.
We develop a theory of removable singularities for the weighted Bergman space , where is a Radon measure on . The set is weakly removable for if , and strongly removable for if . The general theory developed is in many ways similar to the theory of removable singularities for Hardy spaces, and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....
The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent.
We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem
A full description of the membership in the Schatten ideal for 0 < p < ∞ of Toeplitz operators acting on large weighted Bergman spaces is obtained.
We give an elementary approach which allows us to evaluate Seip's conditions characterizing interpolating and sampling sequences in weighted Bergman spaces of infinite order for a wide class of weights depending on the distance to the boundary of the domain. Our results also give some information on cases not covered by Seip's theory. Moreover, we obtain new criteria for weights to be essential.
Currently displaying 341 –
360 of
497