The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.
Let denote the real-valued functions continuous on the extended real line and vanishing at . Let denote the functions that are left continuous, have a right limit at each point and vanish at . Define to be the space of tempered distributions that are the th distributional derivative of a unique function in . Similarly with from . A type of integral is defined on distributions in and . The multipliers are iterated integrals of functions of bounded variation. For each , the spaces...
Suppose that X is a Banach space of analytic functions on a plane domain Ω. We characterize the operators T that intertwine with the multiplication operators acting on X.
The lattice of invariant subspaces of several Banach spaces of analytic functions on the unit disk, for example the Bergman spaces and the Dirichlet spaces, have been studied recently. A natural question is to what extent these investigations carry over to analogously defined spaces on an annulus. We consider this question in the context of general Banach spaces of analytic functions on finitely connected domains Ω. The main result reads as follows: Assume that B is a Banach space of analytic functions...
We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between and .
Let be a bounded countable metric space and a constant, such that , for any pairwise distinct points of . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .
We study isometries between spaces of weighted holomorphic functions. We show that such isometries have a canonical form determined by a group of homeomorphisms of a distinguished subset of the range and domain. A number of invariants for these isometries are determined. For specific families of weights we classify the form isometries can take.
Currently displaying 1 –
19 of
19