The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 388

Showing per page

On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals

Antonio Boccuto, Beloslav Riečan (2004)

Czechoslovak Mathematical Journal

In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with...

On the modulus of measures with values in topological Riesz spaces.

Lech Drewnowski, Witold Wnuk (2002)

Revista Matemática Complutense

The paper is devoted to a study of some aspects of the theory of (topological) Riesz space valued measures. The main topics considered are the following. First, the problem of existence (and, particularly, the so-called proper existence) of the modulus of an order bounded measure, and its relation to a similar problem for the induced integral operator. Second, the question of how properties of such a measure like countable additivity, exhaustivity or so-called absolute exhaustivity, or the properties...

On the strong McShane integral of functions with values in a Banach space

Štefan Schwabik, Ye Guoju (2001)

Czechoslovak Mathematical Journal

The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions....

On vector measures

Corneliu Constantinescu (1975)

Annales de l'institut Fourier

Let be the Banach space of real measures on a σ -ring R , let ' be its dual, let E be a quasi-complete locally convex space, let E ' be its dual, and let μ be an E -valued measure on R . If is shown that for any θ ' there exists an element θ d μ of E such that x ' μ , θ = θ d μ , x ' for any x ' E ' and that the map θ θ d μ : ' E is order continuous. It follows that the closed convex hull of μ ( R ) is weakly compact.

On Vitali-Hahn-Saks-Nikodym type theorems

Barbara T. Faires (1976)

Annales de l'institut Fourier

A Boolean algebra 𝒜 has the interpolation property (property (I)) if given sequences ( a n ) , ( b m ) in 𝒜 with a n b m for all n , m , there exists an element b in 𝒜 such that a n b b n for all n . Let 𝒜 denote an algebra with the property (I). It is shown that if ( μ n : 𝒜 X ) ( X a Banach space) is a sequence of strongly additive measures such that lim n μ n ( a ) exists for each a 𝒜 , then μ ( a ) = lim n μ n ( a ) defines a strongly additive map from 𝒜 to X and the μ n ' s are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive X -valued measures defined...

Currently displaying 221 – 240 of 388