The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
388
Soient , des espaces de Banach , des espaces d’Orlicz, on définit les applications sommantes de dans . On montre que de telles applications sont radonifiantes de dans .On donne une factorisation caractéristique des applications sommantes.
Let ϰ be a positive, continuous, submultiplicative function on such that for some ω ∈ ℝ, α ∈ and . For every λ ∈ (ω,∞) let for . Let be the space of functions Lebesgue integrable on with weight , and let E be a Banach space. Consider the map . Theorem 5.1 of the present paper characterizes the range of the linear map defined on , generalizing a result established by B. Hennig and F. Neubrander for . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...
We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
A characterization is given of those Banach-space-valued vector measures m with finite variation whose associated integration operator Iₘ: f ↦ ∫fdm is compact as a linear map from L¹(m) into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures m (with finite variation) such that Iₘ is compact, and other m (still with finite variation) such that Iₘ is not compact. If m has infinite variation, then Iₘ is never compact.
Currently displaying 41 –
60 of
388