The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 1576

Showing per page

On an integral of fractional power operators

Nick Dungey (2009)

Colloquium Mathematicae

For a bounded and sectorial linear operator V in a Banach space, with spectrum in the open unit disc, we study the operator V ̃ = 0 d α V α . We show, for example, that Ṽ is sectorial, and asymptotically of type 0. If V has single-point spectrum 0, then Ṽ is of type 0 with a single-point spectrum, and the operator I-Ṽ satisfies the Ritt resolvent condition. These results generalize an example of Lyubich, who studied the case where V is a classical Volterra operator.

On an integral transform by R. S. Phillips

Sten Bjon (2010)

Open Mathematics

The properties of a transformation f f ˜ h by R.S. Phillips, which transforms an exponentially bounded C 0-semigroup of operators T(t) to a Yosida approximation depending on h, are studied. The set of exponentially bounded, continuous functions f: [0, ∞[→ E with values in a sequentially complete L c-embedded space E is closed under the transformation. It is shown that ( f ˜ h ) k ˜ = f ˜ h + k for certain complex h and k, and that f ( t ) = lim h 0 + f ˜ h ( t ) , where the limit is uniform in t on compact subsets of the positive real line. If f is Hölder-continuous...

On an integral-type operator from Privalov spaces to Bloch-type spaces

Xiangling Zhu (2011)

Annales Polonici Mathematici

Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator C φ g f ( z ) = 0 1 f ( φ ( t z ) ) g ( t z ) d t / t , f ∈ H(B). The boundedness and compactness of C φ g from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied

On analytic semigroups and cosine functions in Banach spaces

V. Keyantuo, P. Vieten (1998)

Studia Mathematica

If A generates a bounded cosine function on a Banach space X then the negative square root B of A generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by B. The characterization relies on new results on the inversion of the vector-valued conjugate potential transform.

On analyticity of Ornstein-Uhlenbeck semigroups

Beniamin Goldys (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let ( R t be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let μ denote its Gaussian invariant measure. We show that the semigroup ( R t is analytic in L 2 μ if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.

On asymptotic cyclicity of doubly stochastic operators

Wojciech Bartoszek (1999)

Annales Polonici Mathematici

It is proved that a doubly stochastic operator P is weakly asymptotically cyclic if it almost overlaps supports. If moreover P is Frobenius-Perron or Harris then it is strongly asymptotically cyclic.

Currently displaying 181 – 200 of 1576